import torch import os import time ROOT_PATH = '' BASE_ADV_PATH = os.path.join(ROOT_PATH, 'advimages') class AverageMeter: def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def accuracy(output, target, topk=(1,)): maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.reshape(1, -1).expand_as(pred)) return [correct[:k].reshape(-1).float().sum(0) * 100. / batch_size for k in topk] class Logger(object): def __init__(self, path, header): self.log_file = open(path, 'w') self.logger = csv.writer(self.log_file, delimiter='\t') self.logger.writerow(header) self.header = header def __del(self): self.log_file.close() def log(self, values): write_values = [] for col in self.header: assert col in values write_values.append(values[col]) self.logger.writerow(write_values) self.log_file.flush()