xiaolin_code/Normalize.py

44 lines
1.1 KiB
Python

import torch
import torch.nn as nn
class Normalize(nn.Module):
def __init__(self, mean, std):
super(Normalize, self).__init__()
self.mean = mean
self.std = std
def forward(self, input):
size = input.size()
x = input.clone()
for i in range(size[1]):
x[:, i] = (x[:, i] - self.mean[i]) / self.std[i]
return x
class TfNormalize(nn.Module):
def __init__(self, mean=0, std=1, mode='tensorflow'):
super(TfNormalize, self).__init__()
self.mean = mean
self.std = std
self.mode = mode
def forward(self, input):
size = input.size()
x = input.clone()
if self.mode == 'tensorflow':
x = x * 2.0 - 1.0
elif self.mode == 'torch':
for i in range(size[1]):
x[:, i] = (x[:, i] - self.mean[i]) / self.std[i]
return x
class Permute(nn.Module):
def __init__(self, permutation=[2, 1, 0]):
super().__init__()
self.permutation = permutation
def forward(self, input):
return input[:, self.permutation]