#include #include "fusion.h" // 角度 -> 弧度转换 #define ANGLE_TO_RADIAN(angle) ((angle)*3141.59 / 180000) // fusion函数 char LCFusion::fusion(std::vector &camInfo) { projectedPoints.clear(); if (camInfo.size() < 3) // 判断返回的双目测距信息是否为空,正常为3 { std::cout << "There is no detection box!" << std::endl; return -1; } Mat boxes = camInfo[1], dwha = camInfo[2]; projectedPoints.clear(); if (this->upScan.pointCloud.empty()) { std::cout << "There is no lidar data!" << std::endl; return -2; } if (boxes.empty()) { std::cout << "There is no detection box!" << std::endl; return -1; } else { draw_point(camInfo); // 画出雷达映射到图像中的点 std::cout << "Fusion start!" << std::endl; // 大物体 vector clusterlable = clusters_bboxs(boxes); // 得到每簇雷达映射的检测框标签(检测框索引值) optimize_clusterlable(clusterlable, boxes); // 优化检测框(针对镂空物体) big_fusion(clusterlable, boxes, dwha); // 大物体赋语义 //小物体 small_box_without_dis(boxes, dwha); // 无距离信息的检测框映射 small_fusion(boxes, dwha); // 小物体赋语义 } return 1; } void LCFusion::big_fusion(vector &clusterlable, Mat &bboxs, Mat &dwha) // 大物体赋语义 { std::cout << "big_fusion" << std::endl; for (int i = 0; i < clusterlable.size(); i++) // 遍历每簇雷达 { int bbox_num = clusterlable[i]; if (bbox_num != -1) // -1代表无检测框与之对应 { int bbox_cls = bboxs.at(bbox_num, 5); if (class_index[bbox_cls] != 13 && class_index[bbox_cls] != 14) // 排除扩散物体(风扇底座、吧台椅) { //std::cout << "bboxcls:" << bbox_cls << std::endl; for (int j = 0; j < this->upScan.clustedCloud[i].size(); j++) // 遍历一簇雷达的所有点赋语义 { int laser_index = this->upScan.clustedCloud[i][j].at(0, 3); this->upScan.intensities[laser_index] = class_intensity[bbox_cls + 1]; } } else { if (upScan.clustedCloud[i].size() > 0 && upScan.clustedCloud[i].size() < 4) // 扩散物体雷达点应该很少 { //cout << "******start draw circle******" << endl; double d = dwha.at(bbox_num, 0); if (d > 0) { draw_circle(i, bbox_num, bboxs, dwha); } // 扩散物体赋语义 } } } } } void LCFusion::small_fusion(Mat &bboxs, Mat &dwha) // 小物体u赋语义 { std::cout << "small_fusion" << std::endl; for (int i = 0; i < bboxs.rows; i++) { int c = bboxs.at(i, 5); float x_mim = bboxs.at(i, 0); float y_min = bboxs.at(i, 1); float x_max = bboxs.at(i, 2); float y_max = bboxs.at(i, 3); std::cout << "cls:" << c << " xmin:" << x_mim << " ymin:" << y_min << " xmax:" << x_max << " ymax:" << y_max << std::endl; if (class_index[c] == 0 || class_index[c] == 2 || (class_index[c] == 4 || class_index[c] == 5)) // 判断小物体u { Mat temp(2, 1, CV_32F); double d = dwha.at(i, 0); double a = dwha.at(i, 3); // 取距离和角度 if (d == -1) continue; //std::cout << "d:" << d << " a: " << a << std::endl; temp.at(0, 0) = float((dwha.at(i, 0) / 100.0) * cos(dwha.at(i, 3))); temp.at(1, 0) = float((dwha.at(i, 0) / 100.0) * sin(dwha.at(i, 3))); temp = c2lR * temp + c2lT; // 相机坐标系-> 雷达坐标系转换 double y = temp.at(0, 0); double x = temp.at(1, 0); float dis = sqrt(x * x + y * y); // 转极坐标 float angle = 0.0; // 得到雷达点索引 if (y >= 0) angle = (acos(x / dis) - this->upScan.angleMin) / this->upScan.angleInc; else angle = ((2 * M_PI - acos(x / dis)) - this->upScan.angleMin) / this->upScan.angleInc; double data_angle = atan((dwha.at(i, 1)) / (200 * dis)); data_angle /= this->upScan.angleInc; // 由测距宽度信息得到需更改的雷达点数的一半 angle = (int)angle - (int)data_angle; // 起始雷达索引 int num_point = 2 * (int)data_angle + 1; // 更改的雷达点数 int len = this->upScan.distance.size(); for (int i = 0; i < num_point; i++) { if ((angle + i) < 0 || (angle + i) > (len - 1)) // 防止越界 continue; this->upScan.distance[angle + i] = dis; this->upScan.intensities[angle + i] = class_intensity[c + 1]; } } else if (class_index[c] == 1 || class_index[c] == 3 ||class_index[c] == 6) { int len = this->upScan.distance.size(); Mat z = r->Z.clone(); if (countNonZero(z) < 1) { return; } if (z.cols >= 2) { int begin_index = 0; for(int j = z.cols-1; j >=0; j-- ) { int d = z.at(0, j); if (d != 0) { begin_index = j; break; } } cout << "tizhongcheng " << z.cols << endl; float d_begin = z.at(0, begin_index)/1000.; float a_begin = z.at(1, begin_index); cout << "d_begin: " << d_begin << " a_begin: " << a_begin << endl; Mat temp(2, 1, CV_32F); temp.at(0, 0) = float(d_begin * cos(a_begin)); temp.at(1, 0) = float(d_begin * sin(a_begin)); temp = c2lR * temp + c2lT; double y = temp.at(0, 0); double x = temp.at(1, 0); float dis = sqrt(x * x + y * y); float angle_index = 0.0; // 得到雷达点索引 if (y >= 0) angle_index = (acos(x / dis) - this->upScan.angleMin) / this->upScan.angleInc; else angle_index = ((2 * M_PI - acos(x / dis)) - this->upScan.angleMin) / this->upScan.angleInc; angle_index = (int)angle_index; if (angle_index >= 0 && angle_index upScan.distance[angle_index] = dis; this->upScan.intensities[angle_index] = class_intensity[c + 1]; } cout << "dis: " << dis << " angle_index: " << angle_index << endl; angle_index += 1; for (int i = begin_index-1; i >= 0; i--) { float temp_d = z.at(0, i)/1000.; float temp_a = z.at(1, i); temp.at(0, 0) = float(temp_d * cos(temp_a)); temp.at(1, 0) = float(temp_d * sin(temp_a)); temp = c2lR * temp + c2lT; y = temp.at(0, 0); x = temp.at(1, 0); dis = sqrt(x * x + y * y); float temp_angle = 0.0; // 得到雷达点索引 if (y >= 0) temp_angle = acos(x / dis); else temp_angle =2 * M_PI - acos(x / dis); float angle_now = this->upScan.angleMin + this->upScan.angleInc*angle_index; if (temp_angle >= angle_now) { if (angle_index >= 0 && angle_index < len) // 防止越界 { this->upScan.distance[angle_index] = dis; // cout << "dis: " << dis << " angle_index: " << angle_index << endl; this->upScan.intensities[angle_index] = class_intensity[c + 1]; } angle_index += 1; } } r->Z = Mat::zeros(2, 1, CV_32FC1); } } } } void LCFusion::optimize_clusterlable(vector &clusterlable, Mat &bboxs) // 针对镂空物体选择对应的雷达簇,寻找镂空物体检测框对应的所有雷达簇 { for (int i = 0; i < bboxs.rows; i++) // 寻找每个框对应的所有雷达簇 { vector temp_cluster_num; Mat temp_bbox = bboxs.row(i).clone(); for (int j = 0; j < clusterlable.size(); j++) { if (clusterlable[j] == i) { temp_cluster_num.push_back(j); } } if (temp_cluster_num.size() == 0) continue; choose_forceground(temp_cluster_num, temp_bbox, clusterlable); // 筛选镂空物体的前景 } } void LCFusion::choose_forceground(vector &cluster_num, Mat &bbox, vector &clusterlable) // 筛选镂空物体的前景 { int box_class = bbox.at(0, 5); if ((class_index[box_class] >= 15 && class_index[box_class] <= 18 || class_index[box_class] == 12 || class_index[box_class] == 10) && cluster_num.size() > 1) { cout << "class " << box_class << " have " << cluster_num.size() << " clusters" << endl; int total_point = 0; for (int i = 0; i < cluster_num.size(); i++) // 计算框内雷达点总数 { total_point += (this->upScan.clustedCloud[cluster_num[i]].size()); } for (int j = 0; j < cluster_num.size(); j++) // 计算每个雷达簇占比,大于0.2认为是背景 { float num_cluster = this->upScan.clustedCloud[cluster_num[j]].size(); if ((num_cluster / total_point > 0.2) || num_cluster > 4) { clusterlable[cluster_num[j]] = -1; } } } } void LCFusion::draw_point(std::vector &camInfo) // 画出映射到图像的雷达点 { projectedPoints.clear(); for (int i = 0; i < this->upScan.pointCloud.rows; i++) { Mat temp_pointcloud = this->upScan.pointCloud.row(i).clone(); Mat uv = pointcloud_pixel(temp_pointcloud); int x = uv.at(0, 0); int y = uv.at(1, 0); if (x > 0 && x < 640 && y > 0 && y < 480) { Point2d pt_uv(x, y); projectedPoints.push_back(pt_uv); } } } // void LCFusion::filter_laser(const FrameData &laserData, float angle_min, float angleInc) // { // upScan.distance.clear(); // upScan.intensities.clear(); // float pointAngle; // upScan.angleInc = angleInc; // for (int i = 0; i < laserData.len; i++) // { // pointAngle = angle_min + i * upScan.angleInc; // if (pointAngle > cameraAnglemin) // { // if (pointAngle > cameraAnglemax) // { // upScan.angleMax = pointAngle - upScan.angleInc; // break; // } // upScan.distance.push_back(laserData.distance[i] / 1000.f); // upScan.intensities.push_back(0); // if (i == (laserData.len - 1)) // upScan.angleMax = pointAngle; // // upScan.intensities.push_back(laserData.intensities[i]); // } // } // upScan.angleMin = upScan.angleMax - (upScan.distance.size() - 1) * upScan.angleInc; // this->scan_to_pointcloud(); // this->cluster(); // } void LCFusion::filter_laser(const FrameData &laserData, float angle_min, float angleInc) // 雷达点和相机视野同步 { upScan.distance.clear(); upScan.intensities.clear(); upScan.angleMin = angle_min; upScan.angleInc = angleInc; upScan.angleMax = ANGLE_TO_RADIAN(laserData.angle_max); float pointAngle; for (int i = 0; i < laserData.len; i++) { upScan.distance.push_back(laserData.distance[i] / 1000.f); pointAngle = angle_min + i * upScan.angleInc; if (pointAngle > cameraAnglemin && pointAngle < cameraAnglemax) upScan.intensities.push_back(1); // 视野范围内强度赋1 else upScan.intensities.push_back(0); // 视野范围外强度赋0 } this->scan_to_pointcloud(); // 雷达极坐标到二维坐标转换 this->cluster(); // 雷达聚类 } void LCFusion::scan_to_pointcloud() // 雷达极坐标到二维坐标转换 { u_int32_t len = upScan.distance.size(); Mat pointcloud(len, 4, CV_32F); for (int i = 0; i < len; i++) { float dis = this->upScan.distance[i]; float x_temp = cos(upScan.angleMin + i * upScan.angleInc) * dis; float y_temp = sin(upScan.angleMin + i * upScan.angleInc) * dis; pointcloud.at(i, 0) = x_temp; pointcloud.at(i, 1) = y_temp; pointcloud.at(i, 2) = 0; pointcloud.at(i, 3) = i; } this->upScan.pointCloud = pointcloud.clone(); } uchar LCFusion::lidar2box(Mat uv, Mat boxes, uchar *boxflag) // 无用 { int x = uv.at(0, 0); int y = uv.at(1, 0); // 实验测试,过滤类别 std::set filterCls = {0, 7, 11, 14, 15, 21}; for (uchar i = 0; i < boxes.rows; i++) { int clsIdx = boxes.at(i, 5); if (filterCls.find(clsIdx) != filterCls.end()) continue; float xmin = boxes.at(i, 0); float xmax = boxes.at(i, 2); float ymin = boxes.at(i, 1); float ymax = boxes.at(i, 3); // 实验测试,过滤过大的误检框 float ratio = (xmax - xmin) * (ymax - ymin) / 308480.; if (ratio > 0.7) { boxflag[i] += 1; continue; } // 若雷达点处于某个目标框内就返回其对应强度值,未考虑目标框重叠情况 if (x >= xmin && x <= xmax && y >= ymin && y <= ymax) { boxflag[i] += 1; return class_intensity[clsIdx + 1]; } } return 0; } std::vector LCFusion::clusters_bboxs(Mat &bboxs) // 所有的聚类的雷达簇和所有的检测框的匹配 { std::vector clusterlable; for (int i = 0; i < this->upScan.clustedCloud.size(); i++) // 遍历每簇雷达 { std::vector temp_cluster = this->upScan.clustedCloud[i]; int temp_clusters_bbox = cluster_bboxs(temp_cluster, bboxs); // 为一簇雷达寻找匹配的检测框 clusterlable.push_back(temp_clusters_bbox); } return clusterlable; } int LCFusion::cluster_bboxs(vector &one_cluster, Mat &bboxs) // 为一簇雷达寻找匹配的检测框 { vector temp_result; Mat begin = pointcloud_pixel(one_cluster[one_cluster.size() - 1]); Mat end = pointcloud_pixel(one_cluster[0]); // 一簇雷达起始点和终止点在像素坐标系的坐标 for (int i = 0; i < bboxs.rows; i++) { Mat bbox = bboxs.row(i).clone(); int cls = bbox.at(0, 5); float ratio = ratio_in_1box(begin, end, bbox); // 在框中占比 if (ratio > 0.8 && this->class_index[cls] >= 7 && class_index[cls] <= 18) // 适用于大物体 temp_result.push_back(i); } if (temp_result.size() < 1) // 若一簇雷达落入多个框里,选择宽度较小的框 return -1; else if (temp_result.size() < 2) return temp_result[0]; else { int min = temp_result[0]; int width_min = bboxs.at(min, 2) - bboxs.at(min, 0); for (int i = 0; i < temp_result.size(); i++) { int width_new = bboxs.at(temp_result[i], 2) - bboxs.at(temp_result[i], 0); if (width_new < width_min) { min = temp_result[i]; width_min = width_new; } } return min; } return -1; } Mat LCFusion::pointcloud_pixel(Mat &pointcloud) // 二维雷达点到像素坐标系转换 { Mat uv(3, 1, CV_32F), cutPointCloud(pointcloud.colRange(0, 3)); Mat camPoint = rotate * cutPointCloud.t() + translation; // float ppp = camPoint.at(2, 0); if (camPoint.at(2, 0) <= 0) { uv = (Mat_(3, 1) << -1, -1, -1); return uv; } float scaleX = camPoint.at(0, 0) / camPoint.at(2, 0); float scaleY = camPoint.at(1, 0) / camPoint.at(2, 0); float scaleD = scaleX * scaleX + scaleY * scaleY; float tempD = 1 + distCoeff.at(0, 0) * scaleD + distCoeff.at(0, 1) * scaleD * scaleD + distCoeff.at(0, 4) * scaleD * scaleD * scaleD; camPoint.at(0, 0) = scaleX * tempD + 2 * distCoeff.at(0, 2) * scaleX * scaleY + distCoeff.at(0, 3) * (scaleD + 2 * scaleX * scaleX); camPoint.at(1, 0) = scaleY * tempD + distCoeff.at(0, 2) * (scaleD + 2 * scaleY * scaleY) + 2 * distCoeff.at(0, 3) * scaleX * scaleY; camPoint.at(2, 0) = 1.0; uv = cameraMat * camPoint; // uv为像素坐标 uv = p2r * uv + t; // 矫正 return uv; } float LCFusion::ratio_in_1box(Mat &begin, Mat &end, Mat &box) // 计算一簇雷达落入检测框的比例 { int x_begin = begin.at(0, 0), x_end = end.at(0, 0), y_begin = begin.at(1, 0), y_end = end.at(1, 0); int xmin = box.at(0, 0), ymin = box.at(0, 1), xmax = box.at(0, 2), ymax = box.at(0, 3); if (y_begin < ymin || y_begin > ymax) return 0; if (x_begin < xmin) { if (x_end < xmin) return 0; else if (x_end < xmax) return (float)(x_end - xmin) / (x_end - x_begin); else return (float)(xmax - xmin) / (x_end - x_begin); } else if (x_begin < xmax) { if (x_end < xmax) return 1; else return (float)(xmax - x_begin) / (x_end - x_begin); } else return 0; } void LCFusion::cluster() // 聚类 { this->upScan.clustedCloud.clear(); int i = 0; for (; i < this->upScan.distance.size();) { std::vector temp; int j = i; temp.push_back(this->upScan.pointCloud.row(i)); for (; j < this->upScan.distance.size() - 1; j++) { // 距离的6%作为分类的阈值 if (abs(this->upScan.distance[j] - this->upScan.distance[j + 1]) < this->upScan.distance[j] * 0.07 ) { temp.push_back(this->upScan.pointCloud.row(j + 1)); } else { i = j + 1; break; } } this->upScan.clustedCloud.push_back(temp); if (j == this->upScan.distance.size() - 1) break; if (i == upScan.distance.size() - 1) { temp.push_back(upScan.pointCloud.row(i)); this->upScan.clustedCloud.push_back(temp); break; } } this->clusterIdx.clear(); int ii = 0, totoalNum = 0; for (auto c : this->upScan.clustedCloud) { for (int jj = 0; jj < c.size(); jj++) { this->clusterIdx.push_back(ii); } totoalNum += c.size(); ii++; } //std::cout << "cluster num: " << this->upScan.clustedCloud.size() << " ii:" << ii << " total:" << totoalNum << " oriNum: " << this->upScan.distance.size() << std::endl; } void LCFusion::draw_circle(int cluster_num, int bbox_num, Mat &bboxs, Mat &dwha) // 扩散物体生成圆弧状伪激光雷达 { vector center_point = find_circle_center(cluster_num); float alfa = center_point[1] * upScan.angleInc + upScan.angleMin, r = dwha.at(bbox_num, 1)/200.f, d = center_point[0], half_data_num = atan(r/d)/(upScan.angleInc); int num_laser_circle = half_data_num * 2 + 1, cls = bboxs.at(bbox_num, 5); float laser_index = center_point[1] - half_data_num; //cout << "alfa: " << alfa << " r: " << r << " d: " << d << " num_laser_circle: " << num_laser_circle << " start_index: " << laser_index << endl; for (int i = 0; i < num_laser_circle; i++) { float theta = upScan.angleMin + laser_index * upScan.angleInc; if (laser_index < 0 || laser_index > upScan.distance.size()) { laser_index++; continue; } float data = pow(r, 2) - pow(d, 2) * pow(sin(theta - alfa), 2); if (data >= 0) { //cout << "draw_one_point" << endl; upScan.distance[laser_index] = circle(d, alfa ,theta, data); upScan.intensities[laser_index] = class_intensity[cls + 1]; } laser_index++; } } vector LCFusion::find_circle_center(int cluster_num) // 寻找扩散物体圆弧的圆心 { vector center_point(2); int index = 0; float total_dis = 0; int num = upScan.clustedCloud[cluster_num].size(); int no_zero_dis = 0; // 非零距离和 for (int i = 0 ; i < num; i++) { index = upScan.clustedCloud[cluster_num][i].at(0, 3); if (upScan.distance[index] != 0) no_zero_dis++; total_dis += upScan.distance[index]; } center_point[0] = total_dis/ no_zero_dis; index -= (num/2); float center_laser_index = index; center_point[1] = center_laser_index; return center_point; } float LCFusion::circle(float d, float alfa ,float theta, float data) // d 中心点距离 r 圆半径 a 中心点角度 theta 雷达角度 { float ro = d * cos(theta - alfa) - sqrt(data); return ro > 0 ? ro:0; } vector LCFusion::width_ladar(const int* coordinates) { int x1 = coordinates[0], y1 = coordinates[1], x2 = coordinates[2], y2 = coordinates[3]; std::vector mid = r-> pic2cam(640 / 2, 480); //�ҵ��������� std::vector loc_tar_start = r-> pic2cam(x1, 480); // �ҵ�Ŀ�����ʼλ�� std::vector loc_tar_end = r-> pic2cam(x2, 480); //�ҵ�Ŀ�����ֹλ�� //ת���ɻ���ֵ float alfa_start = atan((loc_tar_start[0] - mid[0]) / r-> q.at(2, 3)); float alfa_end = atan((loc_tar_end[0] - mid[0]) / r-> q.at(2, 3)); std::vector ladar_range; ladar_range.push_back(alfa_start); ladar_range.push_back(alfa_end); return ladar_range; } void LCFusion::small_box_without_dis(Mat & bboxs, Mat & dwha) // 无距离检测框到像素坐标系映射,过程和small_fusion类似 { std::cout << "small_box_without_dis" << std::endl; double set_dis = 2.0; // 设置距离为2米 for (int i = 0; i < bboxs.rows; i++) { int c = bboxs.at(i, 5); int x_mim = bboxs.at(i, 0); int y_min = bboxs.at(i, 1); int x_max = bboxs.at(i, 2); int y_max = bboxs.at(i, 3); double d = dwha.at(i, 0); int coordinates[4] = {x_mim, y_min, x_max, y_max}; if ((class_index[c] >= 0 && class_index[c] <= 1) || (class_index[c] >= 3 && class_index[c] <= 6)) { Mat temp(2, 1, CV_32F); if (d == -1) { vector box_angle = width_ladar(coordinates); //std::cout << "d:" << d << " a: " << a << std::endl; temp.at(0, 0) = float(set_dis * cos(box_angle[0])); temp.at(1, 0) = float(set_dis * sin(box_angle[0])); temp = c2lR * temp + c2lT; double y = temp.at(0, 0); double x = temp.at(1, 0); float dis = sqrt(x * x + y * y); float angle_end = 0.0; if (y >= 0) angle_end = (acos(x / dis) - this->upScan.angleMin) / this->upScan.angleInc; else angle_end = ((2 * M_PI - acos(x / dis)) - this->upScan.angleMin) / this->upScan.angleInc; angle_end = int(angle_end); // std:: cout << "angle end: " << angle_end << std::endl; temp.at(0, 0) = float(set_dis * cos(box_angle[1])); temp.at(1, 0) = float(set_dis * sin(box_angle[1])); temp = c2lR * temp + c2lT; y = temp.at(0, 0); x = temp.at(1, 0); dis = sqrt(x * x + y * y); float angle_start = 0.0; if (y >= 0) angle_start = (acos(x / dis) - this->upScan.angleMin) / this->upScan.angleInc; else angle_start = ((2 * M_PI - acos(x / dis)) - this->upScan.angleMin) / this->upScan.angleInc; angle_start = int(angle_start); // std:: cout << "angle start: " << angle_start << std::endl; if (angle_end-angle_start <= 0) continue; int num_point = angle_end-angle_start+1; for (int i = 0; i < num_point; i++) { if ((angle_start + i) < 0 || (angle_start + i) > (upScan.distance.size() - 1)) continue; this->upScan.intensities[angle_start + i] = 0; } } } } } void LCFusion::set_laser_data(sensor_msgs::LaserScan &scan, FrameData &laserData) // 设置雷达发布数据(原始雷达) { float angle_min = ANGLE_TO_RADIAN(laserData.angle_min); float angle_max = ANGLE_TO_RADIAN(laserData.angle_max); uint32_t len = laserData.len; float angle_inc = (angle_max - angle_min) / (len - 1.); scan.header.frame_id = "down_laser_link"; scan.range_min = 0.15; scan.range_max = 8.0; scan.angle_min = angle_min; scan.angle_max = angle_max; scan.angle_increment = angle_inc; scan.ranges.resize(len); scan.intensities.resize(len); scan.time_increment = 1. / 2400.; for (int i = 0; i < len; i++) { scan.ranges[i] = laserData.distance[i] / 1000.f; scan.intensities[i] = 0; } } void LCFusion::set_laser_data(sensor_msgs::LaserScan &scan) // 设置雷达发布数据(语义雷达) { scan.header.frame_id = "up_laser_link"; scan.range_min = 0.15; scan.range_max = 8.0; scan.angle_increment = upScan.angleInc; scan.ranges.resize(upScan.distance.size()); scan.intensities.resize(upScan.distance.size()); scan.angle_min = upScan.angleMin; scan.angle_max = upScan.angleMax; for (int i = 0; i < upScan.distance.size(); i++) { scan.ranges[i] = upScan.distance[i]; scan.intensities[i] = upScan.intensities[i]; } scan.time_increment = 1. / 2400.; }