181 lines
7.1 KiB
C++
181 lines
7.1 KiB
C++
|
/*
|
||
|
* Copyright 2018 The Cartographer Authors
|
||
|
*
|
||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
* you may not use this file except in compliance with the License.
|
||
|
* You may obtain a copy of the License at
|
||
|
*
|
||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||
|
*
|
||
|
* Unless required by applicable law or agreed to in writing, software
|
||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
* See the License for the specific language governing permissions and
|
||
|
* limitations under the License.
|
||
|
*/
|
||
|
|
||
|
#include "cartographer/mapping/internal/range_data_collator.h"
|
||
|
|
||
|
#include <memory>
|
||
|
|
||
|
#include "absl/memory/memory.h"
|
||
|
#include "cartographer/mapping/internal/local_slam_result_data.h"
|
||
|
#include "glog/logging.h"
|
||
|
|
||
|
namespace cartographer {
|
||
|
namespace mapping {
|
||
|
|
||
|
constexpr float RangeDataCollator::kDefaultIntensityValue;
|
||
|
|
||
|
/**
|
||
|
* @brief 多个雷达数据的时间同步
|
||
|
*
|
||
|
* @param[in] sensor_id 雷达数据的话题
|
||
|
* @param[in] timed_point_cloud_data 雷达数据
|
||
|
* @return sensor::TimedPointCloudOriginData 根据时间处理之后的数据
|
||
|
*/
|
||
|
sensor::TimedPointCloudOriginData RangeDataCollator::AddRangeData(
|
||
|
const std::string& sensor_id,
|
||
|
sensor::TimedPointCloudData timed_point_cloud_data) { // 第一次拷贝
|
||
|
CHECK_NE(expected_sensor_ids_.count(sensor_id), 0);
|
||
|
|
||
|
// 从sensor_bridge传过来的数据的intensities为空
|
||
|
//。。。timed_point_cloud_data.intensities.resize(
|
||
|
//。。。 timed_point_cloud_data.ranges.size(), kDefaultIntensityValue);
|
||
|
|
||
|
// TODO(gaschler): These two cases can probably be one.
|
||
|
// 如果同话题的点云, 还有没处理的, 就先处同步没处理的点云, 将当前点云保存
|
||
|
if (id_to_pending_data_.count(sensor_id) != 0) {
|
||
|
// current_end_为上一次时间同步的结束时间
|
||
|
// current_start_为本次时间同步的开始时间
|
||
|
current_start_ = current_end_;
|
||
|
// When we have two messages of the same sensor, move forward the older of
|
||
|
// the two (do not send out current).
|
||
|
// 本次时间同步的结束时间为这帧点云数据的结束时间
|
||
|
current_end_ = id_to_pending_data_.at(sensor_id).time;
|
||
|
auto result = CropAndMerge();
|
||
|
// 保存当前点云
|
||
|
id_to_pending_data_.emplace(sensor_id, std::move(timed_point_cloud_data));
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
// 先将当前点云添加到 等待时间同步的map中
|
||
|
id_to_pending_data_.emplace(sensor_id, std::move(timed_point_cloud_data));
|
||
|
|
||
|
// 等到range数据的话题都到来之后再进行处理
|
||
|
if (expected_sensor_ids_.size() != id_to_pending_data_.size()) {
|
||
|
return {};
|
||
|
}
|
||
|
|
||
|
current_start_ = current_end_;
|
||
|
// We have messages from all sensors, move forward to oldest.
|
||
|
common::Time oldest_timestamp = common::Time::max();
|
||
|
// 找到所有传感器数据中最早的时间戳(点云最后一个点的时间)
|
||
|
for (const auto& pair : id_to_pending_data_) {
|
||
|
oldest_timestamp = std::min(oldest_timestamp, pair.second.time);
|
||
|
}
|
||
|
// current_end_是本次时间同步的结束时间
|
||
|
// 是待时间同步map中的 所有点云中最早的时间戳
|
||
|
current_end_ = oldest_timestamp;
|
||
|
return CropAndMerge();
|
||
|
}
|
||
|
|
||
|
// 对时间段内的数据进行截取与合并, 返回时间同步后的点云
|
||
|
sensor::TimedPointCloudOriginData RangeDataCollator::CropAndMerge() {
|
||
|
sensor::TimedPointCloudOriginData result{current_end_, {}, {}};
|
||
|
bool warned_for_dropped_points = false;
|
||
|
// 遍历所有的传感器话题
|
||
|
for (auto it = id_to_pending_data_.begin();
|
||
|
it != id_to_pending_data_.end();) {
|
||
|
// 获取数据的引用
|
||
|
sensor::TimedPointCloudData& data = it->second;
|
||
|
const sensor::TimedPointCloud& ranges = it->second.ranges;
|
||
|
const std::vector<float>& intensities = it->second.intensities;
|
||
|
|
||
|
// 找到点云中 最后一个时间戳小于current_start_的点的索引
|
||
|
auto overlap_begin = ranges.begin();
|
||
|
while (overlap_begin < ranges.end() &&
|
||
|
data.time + common::FromSeconds((*overlap_begin).time) <
|
||
|
current_start_) {
|
||
|
++overlap_begin;
|
||
|
}
|
||
|
|
||
|
// 找到点云中 最后一个时间戳小于等于current_end_的点的索引
|
||
|
auto overlap_end = overlap_begin;
|
||
|
while (overlap_end < ranges.end() &&
|
||
|
data.time + common::FromSeconds((*overlap_end).time) <=
|
||
|
current_end_) {
|
||
|
++overlap_end;
|
||
|
}
|
||
|
|
||
|
// 丢弃点云中时间比起始时间早的点, 每执行一下CropAndMerge()打印一次log
|
||
|
if (ranges.begin() < overlap_begin && !warned_for_dropped_points) {
|
||
|
LOG(WARNING) << "Dropped " << std::distance(ranges.begin(), overlap_begin)
|
||
|
<< " earlier points.";
|
||
|
warned_for_dropped_points = true;
|
||
|
}
|
||
|
|
||
|
// Copy overlapping range.
|
||
|
if (overlap_begin < overlap_end) {
|
||
|
// 获取下个点云的index, 即当前vector的个数
|
||
|
std::size_t origin_index = result.origins.size();
|
||
|
result.origins.push_back(data.origin); // 插入原点坐标
|
||
|
|
||
|
// 获取此传感器时间与集合时间戳的误差,
|
||
|
const float time_correction =
|
||
|
static_cast<float>(common::ToSeconds(data.time - current_end_));
|
||
|
|
||
|
auto intensities_overlap_it =
|
||
|
intensities.begin() + (overlap_begin - ranges.begin());
|
||
|
// reserve() 在预留空间改变时, 会将之前的数据拷贝到新的内存中
|
||
|
result.ranges.reserve(result.ranges.size() +
|
||
|
std::distance(overlap_begin, overlap_end));
|
||
|
|
||
|
// 填充数据
|
||
|
for (auto overlap_it = overlap_begin; overlap_it != overlap_end;
|
||
|
++overlap_it, ++intensities_overlap_it) {
|
||
|
sensor::TimedPointCloudOriginData::RangeMeasurement point{
|
||
|
*overlap_it, *intensities_overlap_it, origin_index};
|
||
|
// current_end_ + point_time[3]_after == in_timestamp +
|
||
|
// point_time[3]_before
|
||
|
// 针对每个点时间戳进行修正, 让最后一个点的时间为0
|
||
|
point.point_time.time += time_correction;
|
||
|
result.ranges.push_back(point);
|
||
|
} // end for
|
||
|
} // end if
|
||
|
|
||
|
// Drop buffered points until overlap_end.
|
||
|
// 如果点云每个点都用了, 则可将这个数据进行删除
|
||
|
if (overlap_end == ranges.end()) {
|
||
|
it = id_to_pending_data_.erase(it);
|
||
|
}
|
||
|
// 如果一个点都没用, 就先放这, 看下一个数据
|
||
|
else if (overlap_end == ranges.begin()) {
|
||
|
++it;
|
||
|
}
|
||
|
// 用了一部分的点
|
||
|
else {
|
||
|
const auto intensities_overlap_end =
|
||
|
intensities.begin() + (overlap_end - ranges.begin());
|
||
|
// 将用了的点删除, 这里的赋值是拷贝
|
||
|
data = sensor::TimedPointCloudData{
|
||
|
data.time, data.origin,
|
||
|
sensor::TimedPointCloud(overlap_end, ranges.end()),
|
||
|
std::vector<float>(intensities_overlap_end, intensities.end())};
|
||
|
++it;
|
||
|
}
|
||
|
} // end for
|
||
|
|
||
|
// 对各传感器的点云 按照每个点的时间从小到大进行排序
|
||
|
std::sort(result.ranges.begin(), result.ranges.end(),
|
||
|
[](const sensor::TimedPointCloudOriginData::RangeMeasurement& a,
|
||
|
const sensor::TimedPointCloudOriginData::RangeMeasurement& b) {
|
||
|
return a.point_time.time < b.point_time.time;
|
||
|
});
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
} // namespace mapping
|
||
|
} // namespace cartographer
|
||
|
|