Sematic-Cartographer/cartographer-master/cartographer/mapping/internal/range_data_collator.cc

181 lines
7.1 KiB
C++
Raw Permalink Normal View History

2022-06-23 19:58:36 +08:00
/*
* Copyright 2018 The Cartographer Authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "cartographer/mapping/internal/range_data_collator.h"
#include <memory>
#include "absl/memory/memory.h"
#include "cartographer/mapping/internal/local_slam_result_data.h"
#include "glog/logging.h"
namespace cartographer {
namespace mapping {
constexpr float RangeDataCollator::kDefaultIntensityValue;
/**
* @brief
*
* @param[in] sensor_id
* @param[in] timed_point_cloud_data
* @return sensor::TimedPointCloudOriginData
*/
sensor::TimedPointCloudOriginData RangeDataCollator::AddRangeData(
const std::string& sensor_id,
sensor::TimedPointCloudData timed_point_cloud_data) { // 第一次拷贝
CHECK_NE(expected_sensor_ids_.count(sensor_id), 0);
// 从sensor_bridge传过来的数据的intensities为空
//。。。timed_point_cloud_data.intensities.resize(
//。。。 timed_point_cloud_data.ranges.size(), kDefaultIntensityValue);
// TODO(gaschler): These two cases can probably be one.
// 如果同话题的点云, 还有没处理的, 就先处同步没处理的点云, 将当前点云保存
if (id_to_pending_data_.count(sensor_id) != 0) {
// current_end_为上一次时间同步的结束时间
// current_start_为本次时间同步的开始时间
current_start_ = current_end_;
// When we have two messages of the same sensor, move forward the older of
// the two (do not send out current).
// 本次时间同步的结束时间为这帧点云数据的结束时间
current_end_ = id_to_pending_data_.at(sensor_id).time;
auto result = CropAndMerge();
// 保存当前点云
id_to_pending_data_.emplace(sensor_id, std::move(timed_point_cloud_data));
return result;
}
// 先将当前点云添加到 等待时间同步的map中
id_to_pending_data_.emplace(sensor_id, std::move(timed_point_cloud_data));
// 等到range数据的话题都到来之后再进行处理
if (expected_sensor_ids_.size() != id_to_pending_data_.size()) {
return {};
}
current_start_ = current_end_;
// We have messages from all sensors, move forward to oldest.
common::Time oldest_timestamp = common::Time::max();
// 找到所有传感器数据中最早的时间戳(点云最后一个点的时间)
for (const auto& pair : id_to_pending_data_) {
oldest_timestamp = std::min(oldest_timestamp, pair.second.time);
}
// current_end_是本次时间同步的结束时间
// 是待时间同步map中的 所有点云中最早的时间戳
current_end_ = oldest_timestamp;
return CropAndMerge();
}
// 对时间段内的数据进行截取与合并, 返回时间同步后的点云
sensor::TimedPointCloudOriginData RangeDataCollator::CropAndMerge() {
sensor::TimedPointCloudOriginData result{current_end_, {}, {}};
bool warned_for_dropped_points = false;
// 遍历所有的传感器话题
for (auto it = id_to_pending_data_.begin();
it != id_to_pending_data_.end();) {
// 获取数据的引用
sensor::TimedPointCloudData& data = it->second;
const sensor::TimedPointCloud& ranges = it->second.ranges;
const std::vector<float>& intensities = it->second.intensities;
// 找到点云中 最后一个时间戳小于current_start_的点的索引
auto overlap_begin = ranges.begin();
while (overlap_begin < ranges.end() &&
data.time + common::FromSeconds((*overlap_begin).time) <
current_start_) {
++overlap_begin;
}
// 找到点云中 最后一个时间戳小于等于current_end_的点的索引
auto overlap_end = overlap_begin;
while (overlap_end < ranges.end() &&
data.time + common::FromSeconds((*overlap_end).time) <=
current_end_) {
++overlap_end;
}
// 丢弃点云中时间比起始时间早的点, 每执行一下CropAndMerge()打印一次log
if (ranges.begin() < overlap_begin && !warned_for_dropped_points) {
LOG(WARNING) << "Dropped " << std::distance(ranges.begin(), overlap_begin)
<< " earlier points.";
warned_for_dropped_points = true;
}
// Copy overlapping range.
if (overlap_begin < overlap_end) {
// 获取下个点云的index, 即当前vector的个数
std::size_t origin_index = result.origins.size();
result.origins.push_back(data.origin); // 插入原点坐标
// 获取此传感器时间与集合时间戳的误差,
const float time_correction =
static_cast<float>(common::ToSeconds(data.time - current_end_));
auto intensities_overlap_it =
intensities.begin() + (overlap_begin - ranges.begin());
// reserve() 在预留空间改变时, 会将之前的数据拷贝到新的内存中
result.ranges.reserve(result.ranges.size() +
std::distance(overlap_begin, overlap_end));
// 填充数据
for (auto overlap_it = overlap_begin; overlap_it != overlap_end;
++overlap_it, ++intensities_overlap_it) {
sensor::TimedPointCloudOriginData::RangeMeasurement point{
*overlap_it, *intensities_overlap_it, origin_index};
// current_end_ + point_time[3]_after == in_timestamp +
// point_time[3]_before
// 针对每个点时间戳进行修正, 让最后一个点的时间为0
point.point_time.time += time_correction;
result.ranges.push_back(point);
} // end for
} // end if
// Drop buffered points until overlap_end.
// 如果点云每个点都用了, 则可将这个数据进行删除
if (overlap_end == ranges.end()) {
it = id_to_pending_data_.erase(it);
}
// 如果一个点都没用, 就先放这, 看下一个数据
else if (overlap_end == ranges.begin()) {
++it;
}
// 用了一部分的点
else {
const auto intensities_overlap_end =
intensities.begin() + (overlap_end - ranges.begin());
// 将用了的点删除, 这里的赋值是拷贝
data = sensor::TimedPointCloudData{
data.time, data.origin,
sensor::TimedPointCloud(overlap_end, ranges.end()),
std::vector<float>(intensities_overlap_end, intensities.end())};
++it;
}
} // end for
// 对各传感器的点云 按照每个点的时间从小到大进行排序
std::sort(result.ranges.begin(), result.ranges.end(),
[](const sensor::TimedPointCloudOriginData::RangeMeasurement& a,
const sensor::TimedPointCloudOriginData::RangeMeasurement& b) {
return a.point_time.time < b.point_time.time;
});
return result;
}
} // namespace mapping
} // namespace cartographer