196 lines
6.6 KiB
C++
196 lines
6.6 KiB
C++
|
/*
|
||
|
* Copyright 2016 The Cartographer Authors
|
||
|
*
|
||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
* you may not use this file except in compliance with the License.
|
||
|
* You may obtain a copy of the License at
|
||
|
*
|
||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||
|
*
|
||
|
* Unless required by applicable law or agreed to in writing, software
|
||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
* See the License for the specific language governing permissions and
|
||
|
* limitations under the License.
|
||
|
*/
|
||
|
|
||
|
#include "cartographer/sensor/compressed_point_cloud.h"
|
||
|
|
||
|
#include <limits>
|
||
|
|
||
|
#include "cartographer/common/math.h"
|
||
|
#include "cartographer/mapping/3d/hybrid_grid.h"
|
||
|
|
||
|
namespace cartographer {
|
||
|
namespace sensor {
|
||
|
|
||
|
namespace {
|
||
|
|
||
|
// Points are encoded on a fixed grid with a grid spacing of 'kPrecision' with
|
||
|
// integers. Points are organized in blocks, where each point is encoded
|
||
|
// relative to the block's origin in an int32 with 'kBitsPerCoordinate' bits per
|
||
|
// coordinate.
|
||
|
constexpr float kPrecision = 0.001f; // in meters.
|
||
|
constexpr int kBitsPerCoordinate = 10;
|
||
|
constexpr int kCoordinateMask = (1 << kBitsPerCoordinate) - 1;
|
||
|
constexpr int kMaxBitsPerDirection = 23;
|
||
|
|
||
|
} // namespace
|
||
|
|
||
|
CompressedPointCloud::ConstIterator::ConstIterator(
|
||
|
const CompressedPointCloud* compressed_point_cloud)
|
||
|
: compressed_point_cloud_(compressed_point_cloud),
|
||
|
remaining_points_(compressed_point_cloud->num_points_),
|
||
|
remaining_points_in_current_block_(0),
|
||
|
input_(compressed_point_cloud->point_data_.begin()) {
|
||
|
if (remaining_points_ > 0) {
|
||
|
ReadNextPoint();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
CompressedPointCloud::ConstIterator
|
||
|
CompressedPointCloud::ConstIterator::EndIterator(
|
||
|
const CompressedPointCloud* compressed_point_cloud) {
|
||
|
ConstIterator end_iterator(compressed_point_cloud);
|
||
|
end_iterator.remaining_points_ = 0;
|
||
|
return end_iterator;
|
||
|
}
|
||
|
|
||
|
RangefinderPoint CompressedPointCloud::ConstIterator::operator*() const {
|
||
|
CHECK_GT(remaining_points_, 0);
|
||
|
return {current_point_};
|
||
|
}
|
||
|
|
||
|
CompressedPointCloud::ConstIterator&
|
||
|
CompressedPointCloud::ConstIterator::operator++() {
|
||
|
--remaining_points_;
|
||
|
if (remaining_points_ > 0) {
|
||
|
ReadNextPoint();
|
||
|
}
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
bool CompressedPointCloud::ConstIterator::operator!=(
|
||
|
const ConstIterator& it) const {
|
||
|
CHECK(compressed_point_cloud_ == it.compressed_point_cloud_);
|
||
|
return remaining_points_ != it.remaining_points_;
|
||
|
}
|
||
|
|
||
|
void CompressedPointCloud::ConstIterator::ReadNextPoint() {
|
||
|
if (remaining_points_in_current_block_ == 0) {
|
||
|
remaining_points_in_current_block_ = *input_++;
|
||
|
for (int i = 0; i < 3; ++i) {
|
||
|
current_block_coordinates_[i] = *input_++ << kBitsPerCoordinate;
|
||
|
}
|
||
|
}
|
||
|
--remaining_points_in_current_block_;
|
||
|
const int point = *input_++;
|
||
|
constexpr int kMask = (1 << kBitsPerCoordinate) - 1;
|
||
|
current_point_[0] =
|
||
|
(current_block_coordinates_[0] + (point & kMask)) * kPrecision;
|
||
|
current_point_[1] = (current_block_coordinates_[1] +
|
||
|
((point >> kBitsPerCoordinate) & kMask)) *
|
||
|
kPrecision;
|
||
|
current_point_[2] =
|
||
|
(current_block_coordinates_[2] + (point >> (2 * kBitsPerCoordinate))) *
|
||
|
kPrecision;
|
||
|
}
|
||
|
|
||
|
CompressedPointCloud::CompressedPointCloud(const PointCloud& point_cloud)
|
||
|
: num_points_(point_cloud.size()) {
|
||
|
// Distribute points into blocks.
|
||
|
struct RasterPoint {
|
||
|
Eigen::Array3i point;
|
||
|
int index;
|
||
|
};
|
||
|
using Blocks = mapping::HybridGridBase<std::vector<RasterPoint>>;
|
||
|
Blocks blocks(kPrecision);
|
||
|
int num_blocks = 0;
|
||
|
CHECK_LE(point_cloud.size(), std::numeric_limits<int>::max());
|
||
|
for (int point_index = 0; point_index < static_cast<int>(point_cloud.size());
|
||
|
++point_index) {
|
||
|
const RangefinderPoint& point = point_cloud[point_index];
|
||
|
CHECK_LT(point.position.cwiseAbs().maxCoeff() / kPrecision,
|
||
|
1 << kMaxBitsPerDirection)
|
||
|
<< "Point out of bounds: " << point.position;
|
||
|
Eigen::Array3i raster_point;
|
||
|
Eigen::Array3i block_coordinate;
|
||
|
for (int i = 0; i < 3; ++i) {
|
||
|
raster_point[i] = common::RoundToInt(point.position[i] / kPrecision);
|
||
|
block_coordinate[i] = raster_point[i] >> kBitsPerCoordinate;
|
||
|
raster_point[i] &= kCoordinateMask;
|
||
|
}
|
||
|
auto* const block = blocks.mutable_value(block_coordinate);
|
||
|
num_blocks += block->empty();
|
||
|
block->push_back({raster_point, point_index});
|
||
|
}
|
||
|
|
||
|
// Encode blocks.
|
||
|
point_data_.reserve(4 * num_blocks + point_cloud.size());
|
||
|
for (Blocks::Iterator it(blocks); !it.Done(); it.Next(), --num_blocks) {
|
||
|
const auto& raster_points = it.GetValue();
|
||
|
CHECK_LE(raster_points.size(), std::numeric_limits<int32>::max());
|
||
|
point_data_.push_back(raster_points.size());
|
||
|
const Eigen::Array3i block_coordinate = it.GetCellIndex();
|
||
|
point_data_.push_back(block_coordinate.x());
|
||
|
point_data_.push_back(block_coordinate.y());
|
||
|
point_data_.push_back(block_coordinate.z());
|
||
|
for (const RasterPoint& raster_point : raster_points) {
|
||
|
point_data_.push_back((((raster_point.point.z() << kBitsPerCoordinate) +
|
||
|
raster_point.point.y())
|
||
|
<< kBitsPerCoordinate) +
|
||
|
raster_point.point.x());
|
||
|
}
|
||
|
}
|
||
|
CHECK_EQ(num_blocks, 0);
|
||
|
}
|
||
|
|
||
|
CompressedPointCloud::CompressedPointCloud(
|
||
|
const proto::CompressedPointCloud& proto) {
|
||
|
num_points_ = proto.num_points();
|
||
|
const int data_size = proto.point_data_size();
|
||
|
point_data_.reserve(data_size);
|
||
|
// TODO(wohe): Verify that 'point_data_' does not contain malformed data.
|
||
|
for (int i = 0; i != data_size; ++i) {
|
||
|
point_data_.emplace_back(proto.point_data(i));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
bool CompressedPointCloud::empty() const { return num_points_ == 0; }
|
||
|
|
||
|
size_t CompressedPointCloud::size() const { return num_points_; }
|
||
|
|
||
|
CompressedPointCloud::ConstIterator CompressedPointCloud::begin() const {
|
||
|
return ConstIterator(this);
|
||
|
}
|
||
|
|
||
|
CompressedPointCloud::ConstIterator CompressedPointCloud::end() const {
|
||
|
return ConstIterator::EndIterator(this);
|
||
|
}
|
||
|
|
||
|
PointCloud CompressedPointCloud::Decompress() const {
|
||
|
PointCloud decompressed;
|
||
|
for (const RangefinderPoint& point : *this) {
|
||
|
decompressed.push_back(point);
|
||
|
}
|
||
|
return decompressed;
|
||
|
}
|
||
|
|
||
|
bool CompressedPointCloud::operator==(
|
||
|
const CompressedPointCloud& right_hand_container) const {
|
||
|
return point_data_ == right_hand_container.point_data_ &&
|
||
|
num_points_ == right_hand_container.num_points_;
|
||
|
}
|
||
|
|
||
|
proto::CompressedPointCloud CompressedPointCloud::ToProto() const {
|
||
|
proto::CompressedPointCloud result;
|
||
|
result.set_num_points(num_points_);
|
||
|
for (const int32 data : point_data_) {
|
||
|
result.add_point_data(data);
|
||
|
}
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
} // namespace sensor
|
||
|
} // namespace cartographer
|