Sematic-Cartographer/cartographer-master/cartographer/transform/transform.h

140 lines
5.5 KiB
C
Raw Normal View History

2022-06-23 19:58:36 +08:00
/*
* Copyright 2016 The Cartographer Authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef CARTOGRAPHER_TRANSFORM_TRANSFORM_H_
#define CARTOGRAPHER_TRANSFORM_TRANSFORM_H_
#include <cmath>
#include "Eigen/Core"
#include "Eigen/Geometry"
#include "cartographer/common/math.h"
#include "cartographer/transform/proto/transform.pb.h"
#include "cartographer/transform/rigid_transform.h"
namespace cartographer {
namespace transform {
// Returns the non-negative rotation angle in radians of the 3D transformation
// 'transform'.
template <typename FloatType>
FloatType GetAngle(const Rigid3<FloatType>& transform) {
return FloatType(2) * std::atan2(transform.rotation().vec().norm(),
std::abs(transform.rotation().w()));
}
// Returns the yaw component in radians of the given 3D 'rotation'. Assuming
// 'rotation' is composed of three rotations around X, then Y, then Z, returns
// the angle of the Z rotation.
template <typename T>
T GetYaw(const Eigen::Quaternion<T>& rotation) {
const Eigen::Matrix<T, 3, 1> direction =
rotation * Eigen::Matrix<T, 3, 1>::UnitX();
return atan2(direction.y(), direction.x());
}
// Returns the yaw component in radians of the given 3D transformation
// 'transform'.
template <typename T>
T GetYaw(const Rigid3<T>& transform) {
return GetYaw(transform.rotation());
}
// Returns an angle-axis vector (a vector with the length of the rotation angle
// pointing to the direction of the rotation axis) representing the same
// rotation as the given 'quaternion'.
template <typename T>
Eigen::Matrix<T, 3, 1> RotationQuaternionToAngleAxisVector(
const Eigen::Quaternion<T>& quaternion) {
Eigen::Quaternion<T> normalized_quaternion = quaternion.normalized();
// We choose the quaternion with positive 'w', i.e., the one with a smaller
// angle that represents this orientation.
if (normalized_quaternion.w() < 0.) {
// Multiply by -1. http://eigen.tuxfamily.org/bz/show_bug.cgi?id=560
normalized_quaternion.w() = -1. * normalized_quaternion.w();
normalized_quaternion.x() = -1. * normalized_quaternion.x();
normalized_quaternion.y() = -1. * normalized_quaternion.y();
normalized_quaternion.z() = -1. * normalized_quaternion.z();
}
// We convert the normalized_quaternion into a vector along the rotation axis
// with length of the rotation angle.
const T angle =
2. * atan2(normalized_quaternion.vec().norm(), normalized_quaternion.w());
constexpr double kCutoffAngle = 1e-7; // We linearize below this angle.
const T scale = angle < kCutoffAngle ? T(2.) : angle / sin(angle / 2.);
return Eigen::Matrix<T, 3, 1>(scale * normalized_quaternion.x(),
scale * normalized_quaternion.y(),
scale * normalized_quaternion.z());
}
// Returns a quaternion representing the same rotation as the given 'angle_axis'
// vector.
template <typename T>
Eigen::Quaternion<T> AngleAxisVectorToRotationQuaternion(
const Eigen::Matrix<T, 3, 1>& angle_axis) {
T scale = T(0.5);
T w = T(1.);
constexpr double kCutoffAngle = 1e-8; // We linearize below this angle.
if (angle_axis.squaredNorm() > kCutoffAngle) {
const T norm = angle_axis.norm();
scale = sin(norm / 2.) / norm;
w = cos(norm / 2.);
}
const Eigen::Matrix<T, 3, 1> quaternion_xyz = scale * angle_axis;
return Eigen::Quaternion<T>(w, quaternion_xyz.x(), quaternion_xyz.y(),
quaternion_xyz.z());
}
// Projects 'transform' onto the XY plane.
template <typename T>
Rigid2<T> Project2D(const Rigid3<T>& transform) {
return Rigid2<T>(transform.translation().template head<2>(),
GetYaw(transform));
}
// Embeds 'transform' into 3D space in the XY plane.
template <typename T>
Rigid3<T> Embed3D(const Rigid2<T>& transform) {
return Rigid3<T>(
{transform.translation().x(), transform.translation().y(), T(0)},
Eigen::AngleAxis<T>(transform.rotation().angle(),
Eigen::Matrix<T, 3, 1>::UnitZ()));
}
// Conversions between Eigen and proto.
Rigid2d ToRigid2(const proto::Rigid2d& transform);
Eigen::Vector2d ToEigen(const proto::Vector2d& vector);
Eigen::Vector3f ToEigen(const proto::Vector3f& vector);
Eigen::Vector4f ToEigen(const proto::Vector4f& vector);
Eigen::Vector3d ToEigen(const proto::Vector3d& vector);
Eigen::Quaterniond ToEigen(const proto::Quaterniond& quaternion);
proto::Rigid2d ToProto(const Rigid2d& transform);
proto::Rigid2f ToProto(const Rigid2f& transform);
proto::Rigid3d ToProto(const Rigid3d& rigid);
Rigid3d ToRigid3(const proto::Rigid3d& rigid);
proto::Rigid3f ToProto(const Rigid3f& rigid);
proto::Vector2d ToProto(const Eigen::Vector2d& vector);
proto::Vector3f ToProto(const Eigen::Vector3f& vector);
proto::Vector4f ToProto(const Eigen::Vector4f& vector);
proto::Vector3d ToProto(const Eigen::Vector3d& vector);
proto::Quaternionf ToProto(const Eigen::Quaternionf& quaternion);
proto::Quaterniond ToProto(const Eigen::Quaterniond& quaternion);
} // namespace transform
} // namespace cartographer
#endif // CARTOGRAPHER_TRANSFORM_TRANSFORM_H_