Sematic-Cartographer/cartographer-master/cartographer/sensor/internal/collator_test.cc

184 lines
7.2 KiB
C++
Executable File

/*
* Copyright 2016 The Cartographer Authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "cartographer/sensor/internal/collator.h"
#include <array>
#include <memory>
#include "absl/memory/memory.h"
#include "cartographer/common/time.h"
#include "cartographer/sensor/imu_data.h"
#include "cartographer/sensor/internal/test_helpers.h"
#include "cartographer/sensor/odometry_data.h"
#include "cartographer/sensor/timed_point_cloud_data.h"
#include "gtest/gtest.h"
namespace cartographer {
namespace sensor {
namespace {
using testing::CollatorInput;
using testing::CollatorOutput;
TEST(Collator, Ordering) {
const int kTrajectoryId = 0;
const std::array<std::string, 4> kSensorId = {
{"horizontal_rangefinder", "vertical_rangefinder", "imu", "odometry"}};
std::vector<CollatorInput> input_data;
// Send each sensor_id once to establish a common start time.
input_data.push_back(
CollatorInput::CreateTimedPointCloudData(kTrajectoryId, kSensorId[0], 0));
input_data.push_back(
CollatorInput::CreateTimedPointCloudData(kTrajectoryId, kSensorId[1], 0));
input_data.push_back(
CollatorInput::CreateImuData(kTrajectoryId, kSensorId[2], 0));
input_data.push_back(
CollatorInput::CreateOdometryData(kTrajectoryId, kSensorId[3], 0));
input_data.push_back(CollatorInput::CreateTimedPointCloudData(
kTrajectoryId, kSensorId[0], 100));
input_data.push_back(CollatorInput::CreateTimedPointCloudData(
kTrajectoryId, kSensorId[1], 200));
input_data.push_back(
CollatorInput::CreateImuData(kTrajectoryId, kSensorId[2], 300));
input_data.push_back(CollatorInput::CreateTimedPointCloudData(
kTrajectoryId, kSensorId[0], 400));
input_data.push_back(CollatorInput::CreateTimedPointCloudData(
kTrajectoryId, kSensorId[1], 500));
input_data.push_back(
CollatorInput::CreateOdometryData(kTrajectoryId, kSensorId[3], 600));
std::vector<CollatorOutput> received;
Collator collator;
collator.AddTrajectory(
kTrajectoryId,
absl::flat_hash_set<std::string>(kSensorId.begin(), kSensorId.end()),
[&received, kTrajectoryId](const std::string& sensor_id,
std::unique_ptr<Data> data) {
received.push_back(CollatorOutput(kTrajectoryId, data->GetSensorId(),
data->GetTime()));
});
input_data[0].MoveToCollator(&collator);
input_data[1].MoveToCollator(&collator);
input_data[2].MoveToCollator(&collator);
input_data[3].MoveToCollator(&collator);
input_data[4].MoveToCollator(&collator);
input_data[9].MoveToCollator(&collator);
input_data[7].MoveToCollator(&collator);
input_data[5].MoveToCollator(&collator);
input_data[8].MoveToCollator(&collator);
input_data[6].MoveToCollator(&collator);
EXPECT_EQ(kTrajectoryId, collator.GetBlockingTrajectoryId().value());
ASSERT_EQ(7, received.size());
EXPECT_EQ(input_data[4].expected_output, received[4]);
EXPECT_EQ(input_data[5].expected_output, received[5]);
EXPECT_EQ(input_data[6].expected_output, received[6]);
collator.FinishTrajectory(kTrajectoryId);
collator.Flush();
ASSERT_EQ(input_data.size(), received.size());
for (size_t i = 4; i < input_data.size(); ++i) {
EXPECT_EQ(input_data[i].expected_output, received[i]);
}
}
TEST(Collator, OrderingMultipleTrajectories) {
const int kTrajectoryId[] = {8, 5};
const std::array<std::string, 2> kSensorId = {{"my_points", "some_imu"}};
std::vector<CollatorInput> input_data;
// Send each sensor_id once to establish a common start time.
input_data.push_back(CollatorInput::CreateTimedPointCloudData(
kTrajectoryId[0], kSensorId[0], 0));
input_data.push_back(
CollatorInput::CreateImuData(kTrajectoryId[0], kSensorId[1], 0));
input_data.push_back(CollatorInput::CreateTimedPointCloudData(
kTrajectoryId[1], kSensorId[0], 0));
input_data.push_back(
CollatorInput::CreateImuData(kTrajectoryId[1], kSensorId[1], 0));
input_data.push_back(CollatorInput::CreateTimedPointCloudData(
kTrajectoryId[0], kSensorId[0], 100));
input_data.push_back(
CollatorInput::CreateImuData(kTrajectoryId[1], kSensorId[1], 200));
input_data.push_back(
CollatorInput::CreateImuData(kTrajectoryId[0], kSensorId[1], 300));
input_data.push_back(CollatorInput::CreateTimedPointCloudData(
kTrajectoryId[1], kSensorId[0], 400));
input_data.push_back(CollatorInput::CreateTimedPointCloudData(
kTrajectoryId[1], kSensorId[0], 400));
input_data.push_back(CollatorInput::CreateTimedPointCloudData(
kTrajectoryId[1], kSensorId[0], 500));
input_data.push_back(
CollatorInput::CreateImuData(kTrajectoryId[1], kSensorId[1], 600));
std::vector<CollatorOutput> received;
Collator collator;
collator.AddTrajectory(
kTrajectoryId[0],
absl::flat_hash_set<std::string>(kSensorId.begin(), kSensorId.end()),
[&received, kTrajectoryId](const std::string& sensor_id,
std::unique_ptr<Data> data) {
received.push_back(CollatorOutput(kTrajectoryId[0], data->GetSensorId(),
data->GetTime()));
});
collator.AddTrajectory(
kTrajectoryId[1],
absl::flat_hash_set<std::string>(kSensorId.begin(), kSensorId.end()),
[&received, kTrajectoryId](const std::string& sensor_id,
std::unique_ptr<Data> data) {
received.push_back(CollatorOutput(kTrajectoryId[1], data->GetSensorId(),
data->GetTime()));
});
input_data[0].MoveToCollator(&collator);
input_data[1].MoveToCollator(&collator);
input_data[2].MoveToCollator(&collator);
input_data[3].MoveToCollator(&collator);
input_data[4].MoveToCollator(&collator);
input_data[6].MoveToCollator(&collator);
EXPECT_EQ(kTrajectoryId[1], collator.GetBlockingTrajectoryId().value());
input_data[7].MoveToCollator(&collator);
input_data[8].MoveToCollator(&collator);
EXPECT_EQ(kTrajectoryId[1], collator.GetBlockingTrajectoryId().value());
input_data[5].MoveToCollator(&collator);
EXPECT_EQ(kTrajectoryId[0], collator.GetBlockingTrajectoryId().value());
input_data[10].MoveToCollator(&collator);
input_data[9].MoveToCollator(&collator);
EXPECT_EQ(kTrajectoryId[0], collator.GetBlockingTrajectoryId().value());
ASSERT_EQ(5, received.size());
EXPECT_EQ(input_data[4].expected_output, received[4]);
collator.FinishTrajectory(kTrajectoryId[0]);
collator.FinishTrajectory(kTrajectoryId[1]);
collator.Flush();
ASSERT_EQ(input_data.size(), received.size());
for (size_t i = 4; i < input_data.size(); ++i) {
EXPECT_EQ(input_data[i].expected_output, received[i]);
}
}
} // namespace
} // namespace sensor
} // namespace cartographer